

	2つ目の "M": マ ルチコアファイバー					
			N			
# of cores	19	37	36 (3 modes/core)			
Core pitch	39.0 μm (Inner) 37.6 μm (Outer)	29.1 μm	34 μm			
Cladding diameter	220 μm	248 μm	306 µm			
Loss	0.285 dB/km	0.241~0.291 dB/km	0.242~0.308 dB/km			
Aeff	85 μm²	80.0~81.4 μm²	74~77 μm² (LP ₀₁)			
Crosstalk	- 57 dB/km	- 50 dB/km	- 39 dB/km			
Reference	J. Sakaguchi et al. (NICT, Furukawa, Optoquest, OFS), ECOC2013, Th.1.C.6.	Y. Sasaki et al. (Fujikura, NTT, DTU), OFC2017, Th1H.2.	J. Sakaguchi et al. (NICT, Sumitomo, Optoquest), OFC2015, Th5C.2.			

非結合型低損失4-コアファイバ(外形125µm)

マルチコアEDFA				
	Individual core pumping	Uniform clad pumping		
	Erbium -doped -core Signals	Pump Signals		
	Port ID EC: Diversion Biological Micro Notice Biological Micro Prevent Biological Micro Prev	Clading current MC-EDFA_		
Pump coupling	Tapered fiber bundled coupler	Objective lens coupling		
Net gain	23 ~ 27 dB	> 14 dB		
Crosstalk	-30.2 ~ -36.6 dB (15 m)	-32.7 ~ -38 dB (10 m)		
NF	< 4 dB	< 9 dB		
Ref.	K. S. Abedin et al. (OFS), Opt. Express 19 (2011) 16715.	Y. Tsuchida et al. (Furukawa), OFC 2014, Tu2D.1.		
		13		

まとめ

今日の情報量の伸びは年率40%以上に上るが、このことは 20年後には今日の約1000倍の伝送容量が必要となることを意 味する。そのような情報爆発に備えるために我々が研究開発 してきている3M (<u>Multi-level modulation</u>, <u>Multi-core fiber</u>, <u>Multi-mode control</u>)技術についてお話した。

20